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Abstract:  To improve scale adhesion, single crystal superalloys have been desulfurized to levels 
below 1 ppmw by hydrogen annealing.  A transition to fully adherent behavior has been shown to 
occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and René 
N5 single crystal superalloys in 1100o-1150oC cyclic oxidation tests up to 2000 h.  Small additions 
of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about  
5 ppmw.  Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight  
(1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides.  
While hydrogen annealing greatly improved an undoped alloy, yielding ≤0.01 ppmw S, it also 
produced benefits for Y-doped alloys without measurably reducing the sulfur content. 
 
1.   INTRODUCTION: 
 
The oxidation resistance of single crystal superalloys is a topic of significance because of increased 
performance demands and effects on thermal barrier coating lifetimes.  While NiCoCrAlY overlay 
coatings minimize substrate composition effects, some results indicate that platinum aluminide 
diffusion coatings may be affected by the substrate composition.  Excellent scale adhesion and 
cyclic oxidation resistance have been demonstrated for uncoated, yttrium-containing PWA 1487 [1], 
René N5 [2], and CMSX-4 [3,4].  The gettering mechanism of Y is believed to stem from the 
thermodynamic stability of Y-sulfides and the consequent prevention of free sulfur migration to the 
oxide-metal interface [5].  (An additional explanation is that Y ionic segregation at the oxide-metal 
interface inhibits the segregation of S by changing the free energy of the interface [6].)  However 
the addition of Y to single crystal superalloys may entail technical difficulties associated with mold 
reactions, narrow processing windows, and reduced yields.   
 
In support of a primary role of sulfur on oxidation performance, hydrogen annealing has been used 
to remove the sulfur impurity to below 0.5 ppmw and produce dramatic improvements in scale 
adhesion for PWA 1480, PWA 1484, René N5, René N6, and CMSX-4, all without Y [1,2,7-9].  
The critical transition levels of sulfur were determined by hydrogen annealing PWA 1480 samples 
at various times, temperatures, and thickness to produce an adhesion map for 1100oC cyclic 
oxidation [10].  Critical sulfur values were seen to decrease with sample thickness, yielding about 
0.2 ppmw S for a 1 mm thick sample.  These values are now being approached (0.3 ppmw) in bulk 
castings by melt desulfurization [10], but there is an overall cost penalty for either desulfurizing or 
Y-doping.  Low Y additions (10 ppmw) are sufficient to neutralize 2-4 ppmw S [11].  However a 
formal basis relating critical Y levels to various S levels is not well established.  This study attempts 
to pinpoint the critical Y-S values for René N5 by using different Y levels and by reducing the 
sulfur content by hydrogen annealing.  In this way a variety of critical combinations of Y and S 
levels could be determined to optimize adhesion and guide manufacturers. 
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2.   EXPERIMENTAL: 
 
Coupons of René N5 were obtained from General Electric Aircraft Engines having 10 different 
yttrium levels.  They measured about 0.3 x 1.3 x 2.5 cm and were polished to a 600 grit finish on 
emery papers.  The yttrium content was measured by inductively coupled plasma (ICP) emission 
spectroscopy.  The yttrium and sulfur contents (±25%) were also measured by glow discharge mass 
spectroscopy (GDMS).  The Y-free alloy contained 2.6 ppmw sulfur and the 9 doped samples 
contained 3.6-6.5 ppmw sulfur, with no correlation with yttrium content.  The yttrium levels of the 
doped alloys ranged from about 15-100 ppmw.  Hydrogen annealing was performed on duplicate 
samples in a 5%H2/Ar gas mixture at 1250oC for 100 h, producing bright surfaces and slight weight 
losses (0.05 to 0.1 mg/cm2).  Annealing reduced the sulfur content of the undoped sample to below 
the detection limit of GDMS (<0.01 ppmw).  The sulfur content of the Y-doped samples remained 
at about 4.3-7.0 ppmw.  The highest impurity levels (other than transition metal elements) were  
425 ppmw C, 420 ppmw Si, and 70 ppmw B. Only C was reduced (to 100 ppmw) during annealing; 
45 other impurity elements, (P, Na, Ca, In, Pb, etc.), were not reduced substantially. 
 
The coupons were cyclically oxidized at 1150oC in alumina tubes arranged vertically in a Kanthal-
wound resistance furnace, using 1-h heating and 10 min. cooling out to 1000 1-h cycles.  Weights, 
visual observations, x-ray diffaction (XRD) of scale phases, and behavior in water immersion tests 
were recorded after cool-down at various intervals, primarily at 500 and 1000 h.  (Immersion was 
used to further degrade the oxide-metal interface bonding).  Acoustic emission was performed on 
some samples during water immersion. 
 
3.   RESULTS: 
 
The 1150oC cyclic oxidation weight change behavior is shown in Fig. 1.  The as-received, undoped 
alloy exhibited considerable spallation throughout the test, leading to a final weight loss of more 
than 40 mg/cm2, Fig. 1a.  Although some differences may be noted, all the Y-doped coupons 
exhibited nearly equivalent behavior.  For all these 9 alloys, a small maximum in weight gain of 
about 0.7 mg/cm2 was achieved at about 300 h.  Afterwards, minor spallation produced gradual 
weight losses, reaching losses of 1-2 mg/cm2 at 1000 h.  The hydrogen annealed, undoped alloy 
exhibited very adherent behavior, Fig. 1b.  Also, the hydrogen annealed, Y-doped alloys did not 
exhibit the distinct maximum in weight change as did the as-received samples.  Thus weight gains, 
rather than losses, were achieved for this group at the end of the test. 
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Figure 1.  Cyclic oxidation behavior of Rene'N5 with various Y levels (ppmw) at 1150oC, 
1-h cycles:  a)as-received samples; b) hydrogen annealed at 1250oC for 100 h. 
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The final weight changes are summarized for all the test coupons in Fig. 2.  Here it can be seen at a 
glance that all the hydrogen annealed samples produced a small weight gain of 0.6 to 1.0 mg/cm2, 
whereas the as-received, doped samples lost 0.7 to 1.4 mg/cm2, showing no trend with Y level.   
 
The scale phases formed on René N5 were basically Al2O3, NiAl2O4, and NiTa2O6, commonly 
associated with single crystal superalloy oxidation [2,4].  In general, the NiAl2O4 and NiTa2O6 

phases are contained in an outer, transient layer that does not thicken appreciably once a protective 
Al2O3 underlayer is formed.  Some peaks consistent with HfO2 were found primarily on the 
hydrogen annealed samples after long oxidation times. 
 
Visual observations of spalling after cool-down were made at the weighing intervals by means of a 
binocular microscope at a magnification of 10x.  Here small areas (<1 mm2) of spalling to bare 
metal were immediately apparent; their approximate numbers (for one side of the sample, ~3.2 cm2) 
were recorded and summed over the duration of the test. The data are summarized in Fig. 3.  

 
The undoped, as-received sample showed by far the highest frequency of this phenomenon, 
numbering over 2000 such segments per side.  The Y-doped, as-received samples exhibited the next 
highest level, gradually approaching 500 segments with time.  Finally all the hydrogen annealed 
samples exhibited the least number, generally under 100 segments per side for the entire test.  This 
figure confirms the lack of a clear trend with Y content, substantiates the overall improvement due 
to hydrogen annealing, and illustrates the spalling propensity of the undoped, as-received sample. 
 

Figure 2.  Summary of yttrium and 
hydrogen annealing effects on final 
weight change data  (after 1000 
cycles at 1150oC). 

Figure 3.  Cumulative number of 
spalled segments for René N5 
cycled at 1150oC for 1000 h. 
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Also pertinent to adhesion is the effect of water immersion on bare metal spallation.  In general, the 
as-received, undoped sample always exhibited additional spallation when immersed in room 
temperature water.  The as-received, Y-doped samples were usually less sensitive to this 
phenomenon.  However after 500 and 1000 hours of oxidation, the scale has thickened appreciably 
with commensurate increases in the interfacial stresses.  Then, even Y-doped samples exhibited 
massive spallation to bare metal during water immersion, as shown in Fig. 4 for the 103 ppm Y 
alloy.  This effect is summarized for all samples in terms of weight change in Fig. 5.  The overall 
effect is that of increased resistance to water-induced spallation due to hydrogen annealing.  No 
simple trend with Y content is apparent for the as-received samples.  This effect was also followed 
with acoustic emission, which showed that both the number and the energy of acoustic events was 
much greater for as-received samples compared to those for hydrogen annealed samples. 

  
4.   DISCUSSION: 
 
The obvious and primary indication of the oxidation test data was that yttrium additions were very 
effective in increasing scale adhesion and that the lowest level, 16 ppmw, was as effective as the 
highest addition, 105 ppmw.  Hydrogen annealing also was very effective, as had been shown many 
times before, in improving scale adhesion for the undoped alloy.  This resulted from removing the 
sulfur impurity (from 2.6 ppmw down to <0.01 ppmw). 

Figure 5.  The effect of Y content and 
hydrogen annealing on moisture-induced 
spalling (after 500 h at 1150oC). 
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4.1  Unusual behavior:   
However, there are a number of unexpected and less understood results.  Unfortunately, from a test 
variable standpoint, the lowest Y level appeared to be fully effective in gettering sulfur.  Low Y 
levels not only produced excellent oxidation behavior, but also prevented further desulfurization 
during hydrogen annealing. This means that there was only one alloy that showed any significant 
variation in oxidation and desulfurization by hydrogen annealing - the undoped alloy.  No further 
information can be obtained regarding the exact amount of yttrium required to deactivate the 
intrinsic sulfur level (3-7 ppmw) found in these alloys.  Thus a series of critical Y-S combinations, 
producing a Y-S adhesion map, was not obtained. 
 
The other unexpected result is that, although hydrogen annealing did not reduce the sulfur content 
of the Y-doped alloys, it nevertheless improved scale adhesion and oxidation behavior.  This was 
seen from simple weight change results, Figs. 1 and 2, from the observed number of spall segments, 
Fig. 3, and from the effects of annealing on immersion-induced spallation, Fig. 5.  A simple 
explanation is not obvious, but since the annealed samples were not re-polished, there is a slight 
possibility that the very near surface region may be sulfur-poor with respect to the bulk coupon.  
Simple annealing effects, i.e., without desulfurization, are not likely, since single crystal superalloys 
are normally homogenized/solution annealed above 1250oC.  
 
Some insight, however, can be gained regarding the role of Hf, present in this alloy and PWA 1484 
at about the 0.1-0.2 wt.% level (~500 ppma).  In simple NiAl [12] and MCrAl alloys, the 
effectiveness of Hf doping is remarkable and well known.  However, it is clear that Y doping is 
superior for complex MCrAl superalloys such as René N5 and that substantial desulfurization by 
hydrogen annealing is still possible in the presence of Hf.  One possible reason for this difference is 
that Hf is tied up as a carbide [1,13].  Hydrogen annealing removes carbon and releases free Hf, 
which may then become more effective as a sulfur getter and/or interfacial segregant.  Improved 
behavior is thus noted for hydrogen annealed superalloys with Hf (PWA 1484) compared to those 
without (PWA 1480) [13].  However, recently it has been shown that hydrogen annealing also 
dramatically improved the spallation resistance of Ni-7Cr-6Al+Hf model alloys, where no C (<100 
ppmw) has been added intentionally [14]. 
 
4.2  Critical Y, S levels: 
Given the present situation, it is still instructive to discuss the implications of the effects of various 
Y-S levels on oxidation behavior.  The simplest approach would be to address oxidation behavior in 
terms of an Y/S ratio, assuming sulfur gettering is due to the formation of stable yttrium sulfides or 
oxysulfides.  Accordingly, the final weight change occurring after 1000 1-h cycles was presented as 
a function of the Y/S ratio (using ppm atomic) in Fig. 6. 

Figure 6.  The effect of Y/S atom ratio 
on the final weight change after 
1150oC cyclic oxidation of René N5. 

Yttrium / Sulfur ratio, ppma/ppma
0 1 2 3 4 5 6 7 8

10
00

 h
r.

 w
ei

gh
t c

ha
ng

e,
 m

g/
cm

2

-50

-40

-30

-20

-10

0

10
H2-annealed

as-received

YS

Y2O2S

PWA 1484 
(Aimone, 1992)

Y2S3



NASA/TM—2000-210362 6 

   
It can be seen that the oxidation behavior was similar for all the Y-doped alloys; these had Y/S 
atomic ratios greater than or equal to about 1.  These alloys, then, provide only an upper limit to a 
critical Y/S ratio.  The only non-adherent alloy was the one not intentionally Y-doped, in the as-
received condition.  It contained a trace level of Y of about 0.1 ppma (0.14 ppmw) and 4.9 ppma S 
(2.6 ppmw), yielding a very low Y/S ratio of 0.02.  Consequently, we can only infer that the critical 
Y/S ratio lies somewhere between 0.02 and 1, or below the value expected for an YS compound.  
The values for the stable compounds Y2S3 (0.667) and Y2O2S (2.0) are also seen to be relatively 
close in comparison to the transition region.  A similar experimental study of Y-doped PWA 1484 
produced a critical Y/S ratio between about 0.4 and 3.3 [11], overlapping much of the critical region 
bracketed by the present study. 
 
The above rationale (yttrium sulfide stoichiometries) is based on simple chemistry and is useful as a 
straightforward engineering figure of merit.  However it would be more precise to describe the 
segregation potential of sulfur as a function of yttrium content, in the sense of Luthra and Briant 
[15].  Here the degree of sulfur interfacial segregation was thermodynamically defined on the basis 
of the enthalpy of segregation, the free energy of sulfide formation, and the activities of Y and S in 
solid solution.  Unfortunately, the lack of thermodynamic quantities prevents a complete treatment. 
 
Another approach by Meier and Pettit estimated values for the solubility product of yttrium sulfide 
and then calculated corresponding residual concentrations of Y and S that remain mobile in solution 
[13].  Thus for the reaction with YS at unit activity, where KSP is the solubility product and CY,R, 
CS,R are the concentrations of residual Y and S (at.%) that remain in solution: 

 
YS = Y + S   (1) 
KSP = [CY,R][CS,R]  (2) 
CY,R = CY

o - CY
YS  (3) 

CS,R = CS
o - CS

YS  (4) 
CY

YS ≈ CS
YS   (5) 

 

where CY
o and  CS

o are the total concentrations and CY
YS and CS

YS are the levels tied up in the 
sulfide.  A solubility product KSP = (at.%Y) (at.%S) = 7 x 10-10 was estimated [1,13].  They then 
calculated the critical amount of Y required to “tie up” a given amount of sulfur impurity. 
 
This same approach is now followed for various input values of C*

S,R intended to serve as the 
critical sulfur levels for adhesion.  From mapping studies [10], it was found that the critical sulfur 
content (without Y) appeared to be on the order of 0.1-0.4 ppma for PWA 1480.  Accordingly, a 
number of proximate values were input and the corresponding CY

o required for adhesion (producing 
these low C*

S,R) were calculated for various CS
o.  The results shown in Fig. 7 present a family of 

curves which converge above 10 ppma.  They indicate that the required Y level is essentially 
equivalent to the sulfur content (i.e., YS stoichiometry) above 10 ppma.  Below 1 ppma sulfur, the 
required yttrium level exceeds the sulfur level, but is never higher than about 2 ppma yttrium.  Note 
also that the total critical sulfur content, CS

o, can never logically go below the corresponding 
residual amount, C*

S,R, with the result that the curves self-truncate at this value.  This left region of 
the plot corresponds then to ultra-low sulfur alloys, where Y is not required for adhesion. 
  
The present data for various René N5 compositions are shown as large circles.   All the Y-doped 
samples, as-received (open) or hydrogen annealed (solid), fall on or above all the curves delineated 
by the solubility product calculations.  Since these samples all exhibited adherent behavior, this 
approach is in agreement with the experimental results.  However, since the sulfur values were 
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always at about 10 ppma, where the family of curves converges, no distinction can be made 
regarding the various critical values (0.05 - 0.4 ppma S) proposed for C*

S,R.    
 
Non-adherent behavior is of course observed for the as-received, undoped sample, whose Y level is 
far below that of the prescribed adhesion boundary.  Finally, the ultra-low S, hydrogen annealed, 
undoped alloy was very adherent as predicted because its sulfur level was well below all the critical 
C*

S,R values, irrespective of Y content. 
 
4.3 Moisture effects:  
This study showed the often dramatic effect of water immersion on interfacial spalling.  It was most 
prominent on the Y-doped, as-received samples, but only after a considerable scale had been built 
up.  The hydrogen annealed samples were generally quite resistant to this phenomenon.  Water 
immersion was adopted as a moisture sensitivity test during some of the initial low sulfur 
demonstrations of adhesion without dopants [16].  It was generally observed that at intermediate 
sulfur levels, scale retention on cool-down could be achieved initially, but spalling continued over 
time or rapid extensive spalling occurred upon exposure to moisture for PWA 1480, Rene'142, and 
René N5 superalloys [2,7]. 
 
Subsequent studies identified that dry air exposures could control spallation at high sulfur levels for 
one thermal exposure of René N6 (without Y) [8].  Also cycling of PWA 1480, PWA 1484, and 
CMSX 4 (without Y) in dry air exhibited much improved performance compared to humid air [17].  
Here the effect of moisture was discussed as a stress corrosion mechanism and breaking oxide-
metal Al-O-Al bridging bonds, already weakened by the presence of interfacial sulfur.  It was noted 
that sulfur-free interfaces are intrinsically tough enough to resist moisture effects, even when direct 
access to the oxide-metal interface is allowed. This picture is confirmed in the present study.  The 
assumed detrimental presence of interfacial sulfur further suggests that a reaction with water may 
form H2SO4 with an adverse effect on the interfacial chemistry.   It is interesting to point out that 
some kind of stabilization may occur, as samples left open to the room environment for weeks are 
observed to become more resistant to immersion-induced spallation.  Furthermore, the extremely 
rapid spallation events observed here do not readily fit the conventional model of slow crack growth 
operative in moisture-driven, stress-corrosion cracking of bulk ceramics.   

Figure 7.  Critical yttrium and sulfur 
contents estimated according to KSP 
for various C*

S,R adhesion criteria; 
comparison to actual René N5 data. 
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5.   CONCLUSIONS: 
 
The 1150oC cyclic oxidation behavior of a single crystal superalloy, René N5, is excellent when 
doped with Y at about 15 ppmw (10 ppma) for a sulfur level of about 5 ppmw (10 ppma), yielding a 
critical Y/S ratio of about 3:1 by weight (1:1 atomic). Thus the amount of Y required to promote 
good adhesion on these superalloys was very low.  Higher Y levels did not measurably improve 
performance.  The amount of Y sufficient for adhesion was also sufficient to prevent desulfurization 
by hydrogen annealing, consistent with the viewpoint that Y-doping prevents spalling by preventing 
sulfur segregation.  The critical Y/S value found for adhesion was consistent with that estimated 
from a solubility product approach, equivalent to that expected from YS stoichiometry.  Hydrogen 
annealing produced dramatic improvements in scale adhesion for the undoped alloy because it 
reduced the sulfur content to ≤0.01 ppmw.  However, hydrogen annealing also improved the 
spallation resistance of the Y-doped alloys, without measurably reducing the sulfur content, in both 
oxidation and water immersion tests.  These second order improvements in adhesion were achieved 
for all Y levels and suggest a synergism between desulfurization, decarburization and Hf doping.  
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